
Arduino Controlled Lithium-ion Battery Charger

Ning Tian

Figure 1. Charging circuit.

We start from the left-bottom part of Figure 1. The resistor R1 and capacitor C1 together work as a low-

pass filter to smooth PWM signal produced by PWM9 (for more information about how a low-pass filter

works on PWM signal, please see [1]). The MOSFET here works as an amplifier (here we use IRF510

MOSFET). If the voltage between Gate (G) and Source (S) (denoted as G-S voltage) increases, the current

through Drain (D) and S will increase. Note that this happens only when the G-S voltage is above a cut-

off value decided by the MOSFET (interested readers can refer to n-channel eMOSFET in [2]). From

above, we can find that the current through the Li-ion battery can be tuned by changing the G-S voltage,

which can be done by changing the duty cycle of the PWM signal by PWM9 [1]. To be brief, we can

control the charging current by changing the duty cycle (for the information about how Arduino changes

the duty cycle, please see [3]).

The above explains how we can control charging current. In order to do constant-current (CC) charging,

we can simply formulate it as a feedback control problem as follows:

duty cycle = duty cycle + current difference,

where current difference = target current – measured current.

Similarly, constant-voltage (CV) charging can be formulated as

duty cycle = duty cycle + voltage difference,

where voltage difference = upper-limit voltage – measured voltage.

To do CCCV charging, we can combine the CC and CV together. If the measured voltage is below the

upper-limit voltage, we apply CC, otherwise CV is imposed. The schematic diagram of the battery

charger and the Arduino codes are attached below in the Appendix.

Acknowledgement

This charger is developed on the basis of the project in [4].

Appendix

A1. Some further explanation about the circuit design

In the circuit, R2 is to help measure the current through the battery, which can be obtained from the

voltage difference by A0 and A1. Despite of that, R2 introduces resistance to the circuit, so we had

better choose an R2 with small resistance (like 1 Ω), otherwise the charging current can be too small

(e.g., less than 100 mA). Based on the above circuit, we set the CC to be 300 mA.

R3 and R4 work as a voltage divider, and we can thus interpolate the voltage of the power supply from

the voltage across R4. In this circuit, we use a power supply of 5 V. But during charging, you will find the

voltage delivered by the supply is not constant at 5 V and sometime can even go beyond it, e.g., 5.1 V.

Therefore, it is necessary to measure the voltage of the power supply. As analog pins like A0-A5 cannot

read voltage over 5 V, we introduce the voltage divider and read the voltage across A3 to help us infer

the supply’s total voltage. Here, for R3 and R4, their values need to be carefully selected. If they are too

large like 1 MΩ, the reading from the voltage divider can be very inaccurate [5]. If they are too small like

1 Ω, the current through them can be very large and gets the resistors burned.

The analog pin A3 reads the voltage across C1, which is optional here. The reason why it is included is to

help us better understand the circuit. By looking at the voltage read by A3, we can find that, with the

voltage increasing, the current passing through the battery will also increase, which is consistent with

our previous analysis.

A2. Schematic diagram of the battery charger

A3. Virtual connection of the battery charger

A4. The finished battery charger (Panasonic NCR18650B Li-ion battery is used here)

A5. Codes to run in Arduino

// this code is to do CCCV charging for a lithium-ion battery

int batteryCapacity = 3000; //capacity rating of battery in mAh

float resistance = 1.2; //measured resistance of the resistor

int targetVoltage = 4100; //target battery voltage (in mV) in CV mode (usually targetVoltage is the same

with cutoffVoltage, for safety, we make them different here)

int cutoffVoltage = 4200; //maximum battery voltage (in mV) that should not be exceeded

int outputPin = 9; // Output signal wire connected to digital pin 9

int outputValue = 150; //value of PWM output signal, this is related with the duty cycle of the PWM

signal

int analogPinOne = 0; //first voltage probe connected to analog pin A0

float valueProbeOne = 0; //variable to store the value of analogPinOne

float voltageProbeOne = 0; //calculated voltage at analogPinOne

int analogPinTwo = 1; //second voltage probe connected to analog pin A1

float valueProbeTwo = 0; //variable to store the value of analogPinTwo

float voltageProbeTwo = 0; //calculated voltage at analogPinTwo

int analogPinThree = 2; //third voltage probe connected to analog pin A2

float valueProbeThree = 0; //variable to store the value of analogPinThree

float voltageDividerThree = 0; //calculated voltage at analogPinThree, i.e., the voltage of R4

float voltageProbeThree = 0; //calculated voltage of the power supply

int analogPinFour = 3; //fourth voltage probe connected to analog pin A3

float valueProbeFour = 0; //variable to store the value of analogPinFour

float voltageProbeFour = 0; //calculated voltage of capacitor C1

float voltageDifference = 0; //difference in voltage between analogPinOne and analogPinTwo, to

calculate current

float batteryVoltage = 0; //calculated voltage of battery

float current = 0; //calculated current through the load (in mA)

float targetCurrent = batteryCapacity / 10; //target output current (in mA) set at C/10 or 1/10 of the

battery capacity per hour

float currentError = 0; //difference between target current and actual current (in mA)

float voltageError = 0; //difference between target voltage and actual voltage (in mA)

void setup()

{

 Serial.begin(9600); // setup serial

 pinMode(outputPin, OUTPUT); // sets the pin as output

}

void loop()

{

 analogWrite(outputPin, outputValue); //Write output value to output pin

 Serial.print("Output: "); //display output values for monitoring with a computer

 Serial.println(outputValue);

 valueProbeOne = analogRead(analogPinOne); // read the input value at probe one

 voltageProbeOne = (valueProbeOne*4991)/1023; //calculate voltage at probe one in milliVolts

(usually it is 5000 instead of 4991, but by calibration we find 4991 is more accurate, 4969 and 4890

below are obtained for the same reason)

 Serial.print("Voltage Probe One (mV): "); //display voltage at probe one

 Serial.println(voltageProbeOne);

 valueProbeTwo = analogRead(analogPinTwo); // read the input value at probe two

 voltageProbeTwo = (valueProbeTwo*4969)/1023; //calculate voltage at probe two in milliVolts

 Serial.print("Voltage Probe Two (mV): "); //display voltage at probe two

 Serial.println(voltageProbeTwo);

 valueProbeThree = analogRead(analogPinThree); // read the input value at probe three

 voltageDividerThree = (valueProbeThree*4890)/1023; // calculate voltage of R4 in milliVolts

 voltageProbeThree = 2.0445*(valueProbeThree*4890)/1023; // calculate voltage of power supply in

milliVolts

 valueProbeFour = analogRead(analogPinFour); // read the input value at probe four

 voltageProbeFour = (valueProbeFour*4890)/1023; // calculate voltage of C1 in milliVolts

 Serial.print("Voltage Divider (mV): "); //display voltage of R4

 Serial.println(voltageDividerThree);

 Serial.print("Voltage Source (mV): "); //display voltage of power supply

 Serial.println(voltageProbeThree);

 Serial.print("Voltage Reference (mV): "); //display voltage of C1, by observing this value and the

current, you can find current increases with this value increasing

 Serial.println(voltageProbeFour);

 batteryVoltage = voltageProbeThree - voltageProbeTwo; //calculate battery voltage

 Serial.print("Battery Voltage (mV): "); //display battery voltage

 Serial.println(batteryVoltage);

 current = (voltageProbeTwo - voltageProbeOne) / resistance; //calculate charge current

 Serial.print("Target Current (mA): "); //display target current

 Serial.println(targetCurrent);

 Serial.print("Battery Current (mA): "); //display actual current

 Serial.println(current);

 currentError = targetCurrent - current; //difference between target current and measured current

 Serial.print("Current Error (mA): "); //display current error

 Serial.println(currentError);

 voltageError = targetVoltage - batteryVoltage; //difference between target voltage and measured

voltage

 Serial.print("Voltage Error (mV): "); //display voltage error

 Serial.println(voltageError);

 Serial.println(); //extra spaces to make debugging data easier to read

 Serial.println();

if(batteryVoltage <= targetVoltage)

{

 if(abs(currentError) > 10) //if output error is large enough, adjust output

 {

 outputValue = outputValue + currentError / 30;

 if(outputValue < 1) //output can never go below 0

 {

 outputValue = 0;

 }

 if(outputValue > 254) //output can never go above 255

 {

 outputValue = 255;

 }

 analogWrite(outputPin, outputValue); //write the new output value

 }

}

if(batteryVoltage > targetVoltage)

{

 if(abs(voltageError) > 10) //if output error is large enough, adjust output

 {

 outputValue = outputValue + voltageError / 30;

 if(outputValue < 1) //output can never go below 0

 {

 outputValue = 0;

 }

 if(outputValue > 254) //output can never go above 255

 {

 outputValue = 255;

 }

 analogWrite(outputPin, outputValue); //write the new output value

 }

}

 if(batteryVoltage > cutoffVoltage) //stop charging if the battery voltage exceeds the safety threshold

 {

 outputValue = 165;

 Serial.print("Max Voltage Exceeded");

 }

 delay(10000); //delay 10 seconds before next iteration, in the circuit the time constant for the RC

circuit is 1 s, and 10 s is thus reasonable

}

Reference

[1] https://www.allaboutcircuits.com/technical-articles/low-pass-filter-a-pwm-signal-into-an-analog-

voltage/

[2] https://www.electronics-tutorials.ws/amplifier/mosfet-amplifier.html

[3] https://www.arduino.cc/en/tutorial/PWM

[4] https://www.allaboutcircuits.com/projects/create-an-arduino-controlled-battery-charger/

[5] https://www.khanacademy.org/science/electrical-engineering/ee-circuit-analysis-topic/ee-resistor-

circuits/a/ee-voltage-divider

https://www.allaboutcircuits.com/technical-articles/low-pass-filter-a-pwm-signal-into-an-analog-voltage/
https://www.allaboutcircuits.com/technical-articles/low-pass-filter-a-pwm-signal-into-an-analog-voltage/
https://www.electronics-tutorials.ws/amplifier/mosfet-amplifier.html
https://www.arduino.cc/en/tutorial/PWM
https://www.allaboutcircuits.com/projects/create-an-arduino-controlled-battery-charger/
https://www.khanacademy.org/science/electrical-engineering/ee-circuit-analysis-topic/ee-resistor-circuits/a/ee-voltage-divider
https://www.khanacademy.org/science/electrical-engineering/ee-circuit-analysis-topic/ee-resistor-circuits/a/ee-voltage-divider

